Ozone Therapy: Clinical and Basic Evidence of Its Therapeutic Potential

Lamberto Re, a Mohamed N. Mawsouf, b Silvia Menéndez, c Olga S. León, d Gregorio M. Sánchez, d and Frank Hernández c

a Molecular Pharmacology, University of Ancona, Ancona, Italy
b Ozone Therapy Unit, National Cancer Institute, Cairo University, Cairo, Egypt
c Ozone Research Center, Havana City, Cuba
d Center of Studies for Research and Biological Evaluation (CEIEB-IFAL), University of Havana, Havana City, Cuba

Received for publication May 28, 2007; accepted July 17, 2007 (ARCMED-D-07-00225).

Ozone has recently been subjected to criticism and emphasis in relation to clinical efficacy and toxicity, respectively. Without a doubt, ozone, in common with oxygen itself, is one of the most potent oxidants. Ozone is considered one of the major pollutants in urban areas. Nevertheless, increasingly widespread use lately has highlighted the potential benefits as a therapeutic agent when used according to well-defined and safe protocols. Basic studies conducted following rigorous scientific and ethical criteria have been proposed for scientific discussion. This paper concerns original data on an in vivo model of Parkinson’s disease and published data on the effect of low ozone doses with any risk of toxicity excluded with the concentrations commonly used in medical applications. © 2007 IMSS. Published by Elsevier Inc.

Key Words: Ozone, Ozone preconditioning, Diabetes, Parkinson’s disease, Rotenone, Ischemia/reperfusion.

Introduction

In recent years, emphasis and attention has been focused on the use of medical ozone. Despite ample clarification (1), confusion persists concerning its potential toxicity as an oxidant agent vs. the reported clinical efficacy. This confusion is a major factor preventing a more widespread acceptance.

Furthermore, the use in specialties so diverse as neurology, orthopedics, internal medicine, sports medicine, endocrinology, and others makes it difficult to categorize ozone as a therapeutic agent. This may cause conflicts between the different fields of application and the various medical areas.

Ozone is most commonly associated with intervertebral disc herniation (2) and only recently in the field of stomatology.

Regarding disc herniation and the so-called disc conflict, most ozone actions are bound to its peculiar effects on the biohumoral environment. The mistaken view of considering ozone as a simple mechanistic agent causing lysis and reduction of the herniated disc still persists.

The application of ozone in neuroradiology is considered scientific and successful based on the possibility of statistically estimating the reduction or disappearance of the anatomic protrusion.

In our opinion, this is not proof enough. A follow-up considering the status of the patient following treatment could better indicate the efficacy of the ozone treatment compared to different methodologies such as paravertebral, intradiscal, epidural, or intraforaminal injections. The huge variability of the clinical responsiveness of patients introduces further difficulties in the establishment of standardized studies. Recent advances in ozone effects and conditioning suggest a key role for trace elements. Studies are in progress to evaluate the ratio of Mn\(^{2+}\), Cu\(^{2+}\), Zn\(^{2+}\), and other essential elements for the enzymatic activity of superoxide dismutase (SOD) and other enzymes involved in the ozone effect. Dietary insufficiency or impairment either in food supply or metabolic pathways may play a negative role in the efficacy of the ozone treatment.

Most recently published scientific data, partially ignored by some authors, are indicative of many basic effects of the ozone molecule and could form the basis for future
randomized clinical studies. One of the aims of this study is to present the more recent data published in international journals.

The pharmacological theory first described by Erlich on drug action: *corpora non agunt nisi fixata*, intended as a drug-receptor interaction that, following the mass action law promotes and activates a function in the cell, is apparently not applicable to ozone. As pharmacologists and scientists, we are naturally drawn to the challenge of questioning the Erlich theory to demonstrate scientifically some pharmacological activities induced by a gas like ozone without a pure drug/receptor interaction.

In light of more recent pharmacological knowledge, we can consider ozone as a pro-drug which, at certain non-toxic doses, can induce a rearrangement of the biochemical pathways with the activation of a second messenger in a cascade with a multiple system action. Ischemic preconditioning represents the best similarity in this context.

Evidence that antioxidant enzymes, nitric oxide pathways, and other subcellular activities could be modulated by low ozone doses is now proven and could support the surprising effects of ozone in many pathological conditions.

Furthermore, in light of the study by Wentworth et al. (3), the scientific data reported here could be scientifically emphasized and pharmacologically indicative. Indeed, the authors demonstrate the physiological presence of an ozone-similar mediator during inflammation, indicating ozone as a new biomolecule with striking effects, which must be considered and studied following new strategies with newly constructed randomized-standardized clinical studies. Moreover, the mechanisms of action of ozone on blood biomolecules with the generation of several messengers responsible for biological effects have been well clarified since 2002 (4).

We report here some of the most relevant articles recently published on the effects induced by low ozone doses on various biochemical pathways linked to common and rare human pathologies.

Ozone and Diabetes

Basic Studies

Diabetes produces a large number of changes in vessels that affect the reactivity of smooth muscle and endothelium. Vascular endothelium appears to be a vulnerable target for hyperglycemia-induced metabolic changes. Activation of the polyol pathway, non-enzymatic glycosylation of proteins, and the increase of reactive oxygen species (ROS) play an important role in diabetes complications. Ozone has been used as a therapeutic agent and beneficial effects have been observed. However, so far only a few biochemical and pharmacodynamic mechanisms have been elucidated.

The possibility that ozone could induce a useful adaptation to chronic oxidative stress was described in 1996 (5).

Other studies (6—8) confirmed that controlled ozone administration may promote an oxidative preconditioning or adaptation to oxidative stress, preventing the damage induced by ROS.

Given that diabetes is a disorder associated with oxidative stress, it was postulated that ozone treatment might protect antioxidant systems and maintain at a physiological level other markers of endothelial cell damage associated with diabetic complications. A study using streptozotocin (STZ) as a diabetes inducer was designed to test the protective effect promoted by ozone. Ozone treatment improved glycemic control, increased aldose reductase, fructosylsine content, advanced oxidation protein products, pancreas integrity, and prevented oxidative damage. Furthermore, increased nitrite and nitrate levels with respect to STZ group occurred, but without changes when compared to non-diabetic controls. The results of this study show that repeated administration of ozone in non-toxic doses might play a role in the control of diabetes and its complications (9).

In addition, ozone antioxidant properties preserved β-cell functions and reduced hyperglycemia. Together, these results suggest that this approach may represent a potential complement in the treatment of diabetes and its complications (10).

Clinical Studies

Because ozone therapy can activate the antioxidant system, influencing the level of glycemia and some markers of endothelial cell damage at a pre-clinical level, a study to investigate the therapeutic efficacy of ozone treatment in patients with type 2 diabetes and diabetic foot was done, aimed at comparing ozone efficacy with respect to antibiotic therapy. A randomized controlled clinical trial was performed with 101 patients divided into two groups: one (n = 52) treated with ozone (local and rectal insufflation of the gas) and the other (n = 49) treated with topical and systemic antibiotics. The efficacy of the treatments was evaluated by comparing the glycemic index, the area and perimeter of the lesions, the biochemical markers of oxidative stress, and the endothelial damage in both groups after 20 days of treatment. Ozone improved glycemic control, prevented oxidative stress, normalized levels of organic peroxides and activated superoxide dismutase. The pharmacodynamic effect of ozone in the treatment of patients with neuroinfecitious diabetic foot can be ascribed to the possibility of its being a superoxide scavenger. Superoxide is considered a link between the four metabolic routes associated with diabetes pathology and its complications. Furthermore, healing of the lesions improved, resulting in fewer amputations than in the control group. There were no side effects. These results show that medical ozone treatment could be a complementary therapy in the treatment of diabetes and its complications (11).
Ozone and SOD

Many studies indicate that, after reoxygenation of the liver, oxygen free-radical formation may initiate the cascade of hepatocellular injury, necrosis/apoptosis, and subsequent infiltration of inflammatory cells. Although ROS can arise from a number of sources, xanthine oxidase (XO) is frequently implicated as a significant source of these toxic oxygen species. Ischemic preconditioning (IscheP) is an inducible and potent endogenous mechanism by which repeated episodes of brief ischemia/reperfusion (I/R) confer a state of protection against subsequent sustained I/R. On the other hand, it has been demonstrated that ozone at low doses is able to promote an oxidative preconditioning (OzoneOP) through the increase and preservation of antioxidant endogenous systems.

Superoxide is one of the most relevant radicals in biological regulation. Many regulatory effects are mediated by hydrogen peroxide and other ROS that are chemically derived from superoxide (12).

Although SOD could protect against liver I/R injury, administration of SOD does not protect the liver against I/R damage (13). The protein SOD degrades rapidly when administered parenterally. Gene delivery has been used to increase protein expression in the cell (14).

Although the benefit of ischemic preconditioning in the liver has already been suggested in a pilot clinical study (15), knowledge of the molecular mechanism is limited. Intermittent clamping currently is used in practice by many centers. Although the working of the protective mechanism of intermittent clamping still remains unclear, it has been assumed to be a similar mechanism to that described in ischemic preconditioning, mainly by reduction of apoptosis (16). A large number of pharmacological agents were shown to confer protection against ischemic injury in the liver. These agents include antioxidants, adenine agonists and nitric oxide (NO) donors. Nevertheless, only a few drugs are currently at the point of clinical application (15). However, not only adenine production but also other mechanisms seem to be involved.

OzoneOP may promote a moderate oxidative stress which, in turn, increases antioxidant endogenous systems protecting against liver damage (6,17). The protective mechanism mediated by OzoneOP may involve protein synthesis. Elevated ROS concentrations induce gene expression in many cells, whose products exhibit antioxidative activity. A major mechanism of redox homeostasis is based on the ROS-mediated induction of redox-sensitive signal cascades that lead to increased expression of antioxidants (12).

To investigate the influence of the inhibition of protein synthesis on the protective actions conferred by OzoneOP in hepatic I/R, rats were treated with cycloheximide in order to inhibit protein synthesis before OzoneOP treatment. Plasma transaminases, malondialdehyde + 4-hydroxyaldehydes (MDA + 4-HDA), and morphological characteristics were measured as an index of hepatocellular damage; Cu/Zn-SOD, Mn-SOD, catalase (CAT), total hydroperoxides (TH), and reduced glutathione (GSH) levels as markers of endogenous antioxidant system were evaluated. OzoneOP increased Mn-SOD isoform and ameliorated mitochondrial damage. Conversely, cycloheximide abrogated the protection conferred by OzoneOP and decreased Mn-SOD activity. Cellular redox balance disappeared when cycloheximide was introduced. Thus, protein synthesis is involved in the protective mechanisms mediated by OzoneOP, and ozone treatment preserved mitochondrial functions and cellular redox balance (18).

Ozone and Nitric Oxide

Liver transplantation is now accepted as the best treatment for end-stage liver disease. Nevertheless, hepatic I/R injury associated with liver transplantation and hepatic resections are unresolved problems in clinical practice. Many studies indicate that oxygen free-radical formation after reoxygenation of liver may initiate the cascade of hepatocellular injury. The effects of OzoneOP on NO generation and the cellular redox balance have been studied using the inhibitor of the NO synthesis N’-nitro-L-arginine methyl ester (L-NAME) (19). Indeed, a previous study reported the induction of NO by ozonated plasma (20). The following parameters were measured: plasma transaminases (aspartate aminotransferase, alanine aminotransferase) as an index of hepatocellular injury; homogenates of hepatic tissue nitrate/nitrite levels and inducible nitric oxide synthase (iNOS) by immunohistochemistry as an index of NO production; SOD, CAT, and GSH levels as markers of the endogenous antioxidant system, and finally MDA + 4-HDA, TH and tumor necrosis factor (TNF-α) as indicators of oxidative stress. A correspondence between liver damage and the increase of NO, CAT, TH, GSH, and MDA + 4HDA concentrations were observed along with a decrease of SOD activity. OzoneOP prevented and attenuated hepatic damage in OzoneOP +I/R and OzoneOP+L-NAME+I/R, respectively, in close relation with the above-mentioned parameters. Immunohistochemistry of iNOS showed that OzoneOP regulated enzymatic activity, whereas TNF-α levels were attenuated in the OzoneOP + I/R group. These results show that OzoneOP protected against liver I/R injury through mechanisms that promote a regulation of endogenous NO concentrations and the maintenance of cellular redox balance. Ozone treatment may have important clinical implications, particularly in view of the increasing hepatic transplantation programs.

There are different experimental results and opinions surrounding NO generation and its function in liver I/R injury as well as its protective effects. Nevertheless, the role of NO as a regulator of important processes in liver I/R is unquestionable.
OzoneOP regulated NO formation in the OzoneOP + I/R group and decreased the liver damage (increases in AST were prevented and those in ALT were attenuated). L-NAME was able to reduce NO generation in sham-operated groups and decreased the liver damage (increases in AST and ALT were prevented and those in ALT were attenuated). L-NAME and NO levels were not detectable in L-NAME + I/R group. Nevertheless, OzoneOP promoted NO formation in OzoneOP + L-NAME + I/R in spite of the presence of L-NAME, but less than OzoneOP + I/R. There was a concomitant increase in transaminase activities in this group (OzoneOP + L-NAME + I/R). These results suggest that the protection conferred by OzoneOP against the damage in liver I/R seems to be mediated, at least in part, by NO generation.

The contribution of OzoneOP to NO generation may be a consequence of its actions on gene expression. Punjabi et al. (21) and Pendino et al. (22) have shown that exposure to ozone causes NO production in macrophages and type II cells of rats, whereas Haddad et al. (23) demonstrated iNOS induction in rats. More recently, it has been found that ozone-induced lung hyperpermeability is associated with iNOS and that iNOS mRNA levels are mediated through Tlr-4, which has been identified as the gene that determines susceptibility to endotoxins. There was a correlative pattern of gene expression in two strains (ozone-susceptible and ozone-resistant, respectively), which support a role of Tlr4 in the regulation of iNOS during ozone exposure in the mouse (24).

Ozone and Parkinson’s Disease

The aim of our work was the evaluation of OzoneOP on an in vivo model of rotenone-induced neurodegeneration in rats. Oxidative stress has been implicated in numerous pathophysiological situations (25) being considered a unifying factor in the current theories of Parkinson’s disease (PD) pathogenesis. This is because of the links between genetic and potential environmental factors in the onset and progression of the disease. Those environmental toxins that have the strongest association with PD phenotypes either cause high amounts of oxidative stress, such as rotenone, or directly increase the rate of α-synuclein aggregation, as with copper and other heavy metals (26). Furthermore, the aggregation of α-synuclein itself can cause oxidative stress (27) and oxidative stress can in turn cause conformational changes in α-synuclein (28). Even if the factors initiating the pathogenesis of PD and related neurodegenerative synucleinopathies are still largely unclear, many studies indicate a multiple brain mitochondria dysfunction after systemic treatment with pesticides or rotenone (29–31).

As mitochondrial oxidative damage plays an important role in the etiology of numerous oxidative stress-mediated clinical conditions, one possible protective strategy would be to enrich tissue mitochondria with antioxidants, thereby limiting mitochondrial oxidative damage, cellular injury and the initiation and progression of disease (32).

Controlled exposure to a physiologically low level of ROS can regulate a variety of key molecular mechanisms (33) and likely have a protective effect against subsequent exposure to severe oxidative stress. Recently, rotenone has given new clues to our current understanding of PD pathogenesis (34). Rotenone is a classical, high-affinity inhibitor of complex I, which has been widely used to inhibit the aggregation of α-synuclein (28). Even if the factors

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Cortex</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine (µg/g tissue)</td>
<td>Normal control</td>
<td>0.625 ± 0.031</td>
<td>7.813 ± 0.136</td>
</tr>
<tr>
<td></td>
<td>Rotenone</td>
<td>0.423 ± 0.017</td>
<td>6.300 ± 0.260</td>
</tr>
<tr>
<td></td>
<td>Rotenone + ozone preconditioning</td>
<td>0.569 ± 0.021</td>
<td>7.700 ± 0.110</td>
</tr>
<tr>
<td></td>
<td>Ozone</td>
<td>0.669 ± 0.031</td>
<td>7.375 ± 0.280</td>
</tr>
<tr>
<td>Norepinephrine (µg/g tissue)</td>
<td>Normal control</td>
<td>0.581 ± 0.031</td>
<td>1.238 ± 0.057</td>
</tr>
<tr>
<td></td>
<td>Rotenone</td>
<td>0.419 ± 0.016</td>
<td>0.688 ± 0.034</td>
</tr>
<tr>
<td></td>
<td>Rotenone + ozone preconditioning</td>
<td>0.560 ± 0.015</td>
<td>1.091 ± 0.053</td>
</tr>
<tr>
<td></td>
<td>Ozone</td>
<td>0.605 ± 0.018</td>
<td>1.163 ± 0.053</td>
</tr>
</tbody>
</table>

Data are mean ± SE.
*Significant difference from control group.
†Significant difference from rotenone group.
One-way ANOVA followed by LSD test, significant difference at p < 0.05.

Table 1. Effect of ozone preconditioning on cortical and striatal dopamine and norepinephrine content in rotenone-induced parkinsonism in rats (n = 8)

Table 2. Effect of ozone preconditioning on cortical and striatal nitric oxide content in rotenone-induced parkinsonism in rats (n = 8)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Cortex</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>44.250 ± 1.221</td>
<td>52.375 ± 1.569</td>
</tr>
<tr>
<td>Rotenone</td>
<td>66.500 ± 2.188</td>
<td>70.500 ± 1.880</td>
</tr>
<tr>
<td>Rotenone + ozone preconditioning</td>
<td>54.375 ± 1.475</td>
<td>56.875 ± 1.315</td>
</tr>
<tr>
<td>Ozone</td>
<td>51.750 ± 1.556</td>
<td>54.125 ± 3.466</td>
</tr>
</tbody>
</table>

Data are mean ± SE.
*Significant difference from control group.
†Significant difference from rotenone group.
One-way ANOVA followed by LSD test, significant difference at p < 0.05.
understand the specific activity of the complex. Rotenone, being extremely lipophilic, freely crosses the blood-brain barrier and biological membranes, thus rapidly reaching the brain.

Repeated systemic exposure of rotenone has been reported to cause nigrostriatal dopaminergic degeneration in rats, producing an \textit{in vivo} experimental model of PD (35).

The reductions in the activity of complex 1 of the mitochondrial electron transfer chain (ETC) may play an important role in rotenone-induced dopaminergic neurodegeneration in PD (36).

The irreversible inhibition of mitochondrial complex 1 results in energy depletion and increases mitochondrial oxyradical production to which dopaminergic neurons are vulnerable (37).

Materials and Methods

The duration of the study was 4 weeks and was conducted to evaluate the neurochemical effects of repeated exposure to rotenone in rats and to test the probable preventive effect of OzoneOP (as an indirect antioxidant) against rotenone-induced neurodegeneration in rats.

Sixty Sprague Dawley rats (Harlan, Indianapolis, IN) were included in the study, with an average weight of 175 g, divided into four groups: group I: control group, group II: ozone control group. Rats were given 5 mL of 25 mg/mL ozone in oxygen rectal insufflations (0.7 mg/kg). They received 20 sessions: five sessions per week for 4 weeks. In group III, rotenone was injected SC at a dose of 2 mg/kg/day every other day for a total of six injections during 11 days. Group IV was the study group (OzoneOP). Rats were given 5 mL of 25 mg/mL ozone in oxygen rectal insufflations (0.7 mg/kg). They received 20 sessions: five sessions per week for 4 weeks. After 10 sessions of ozone administration (2 weeks), rotenone was injected SC at a dose of 2 mg/kg/day every other day for a total of six injections during 11 days.

Groups of eight animals were sacrificed from each group, 24 h after the end of the study. Brains were quickly removed, washed with ice-cold saline, and the areas of cortex and striatum were isolated, weighed, and homogenized as 10% (w/v) either in 70% methanol (for dopamine and ARCMED1188_proof \ 18-9-2007 23-54-2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Cortex</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidized glutathione ((\mu)g/g tissue)</td>
<td>Normal control</td>
<td>2.097 ± 0.035(^1)</td>
<td>2.130 ± 0.020(^1)</td>
</tr>
<tr>
<td></td>
<td>Rotenone</td>
<td>2.935 ± 0.048(^*)</td>
<td>2.982 ± 0.029(^*)</td>
</tr>
<tr>
<td></td>
<td>Rotenone + ozone preconditioning</td>
<td>2.258 ± 0.035(^*)(^1)</td>
<td>2.367 ± 0.030(^*)(^1)</td>
</tr>
<tr>
<td></td>
<td>Ozone</td>
<td>2.224 ± 0.027(^*)(^1)</td>
<td>2.343 ± 0.025(^*)(^1)</td>
</tr>
<tr>
<td>Reduced glutathione ((\mu)g/g tissue)</td>
<td>Normal control</td>
<td>2.306 ± 0.038(^1)</td>
<td>2.343 ± 0.022(^1)</td>
</tr>
<tr>
<td></td>
<td>Rotenone</td>
<td>1.381 ± 0.039(^*)</td>
<td>1.416 ± 0.042(^*)</td>
</tr>
<tr>
<td></td>
<td>Rotenone + ozone preconditioning</td>
<td>2.294 ± 0.036(^1)</td>
<td>2.014 ± 0.043(^*)(^1)</td>
</tr>
<tr>
<td></td>
<td>Ozone</td>
<td>2.093 ± 0.034(^*)(^1)</td>
<td>2.263 ± 0.079(^1)</td>
</tr>
</tbody>
</table>

Data are mean ± SE.

\(^*\) Significant difference from control group.

\(^1\) Significant difference from rotenone group.

One-way ANOVA followed by LSD test, significant difference at \(p < 0.05\).

Table 3. Effect of ozone preconditioning on cortical and striatal oxidized and reduced glutathione content in rotenone-induced parkinsonism in rats \((n = 8)\)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Cortex</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA (ng/g tissue)</td>
<td>Normal control</td>
<td>132.500 ± 3.273(^1)</td>
<td>166.250 ± 3.504(^1)</td>
</tr>
<tr>
<td></td>
<td>Rotenone</td>
<td>266.375 ± 4.717(^*)</td>
<td>250.125 ± 9.565(^*)</td>
</tr>
<tr>
<td></td>
<td>Rotenone + ozone preconditioning</td>
<td>166.875 ± 4.112(^*)(^1)</td>
<td>178.750 ± 2.266(^1)</td>
</tr>
<tr>
<td></td>
<td>Ozone</td>
<td>154.375 ± 5.858(^*)(^1)</td>
<td>176.250 ± 2.950(^1)</td>
</tr>
<tr>
<td>Protein carbonyls (ng/mg protein)</td>
<td>Normal control</td>
<td>4.288 ± 0.191(^1)</td>
<td>5.125 ± 0.183(^1)</td>
</tr>
<tr>
<td></td>
<td>Rotenone</td>
<td>6.163 ± 0.286(^*)</td>
<td>7.000 ± 0.283(^*)</td>
</tr>
<tr>
<td></td>
<td>Rotenone + ozone preconditioning</td>
<td>4.838 ± 0.145(^*)(^1)</td>
<td>5.713 ± 0.195(^*)(^1)</td>
</tr>
<tr>
<td></td>
<td>Ozone</td>
<td>4.588 ± 0.136(^1)</td>
<td>5.375 ± 0.183(^1)</td>
</tr>
</tbody>
</table>

Data are mean ± SE.

\(^*\) Significant difference from control group.

\(^1\) Significant difference from rotenone group.

One-way ANOVA followed by LSD test, significant difference at \(p < 0.05\).
norepinephrine) or saline (remaining parameters). Prepara-
tion of cytosolic fraction was carried out by centrifuging an
aliquot of tissue homogenate at 105,000 g at 4°C for 45
min. The supernatant was used for the determination of
SOD activity. Dopamine and norepinephrine were deter-
mined by the HPLC method according to Pagel et al.
(38). Adenosine triphosphate determination was carried
out according to the method of Zhang et al. (39). Determina-
tion of reduced and oxidized glutathione levels were car-
rried out according to the methodology of Jayatilleke and
Shaw (40). MDA levels were established according to
Karatepe (41). Levels of reactive carbonyls in proteins were
analyzed according to Levine et al. (42), modified by
Adams et al. (43). NO (as nitrite and nitrate) was carried
out according to the method of Everett et al. (44). Protein
was determined according to Lowry et al. (45). Finally,
histopathological examination was carried out according
to Carleton and Drury (46).

One-way ANOVA followed by LSD test was used to
evaluate significant differences from the controls.

Results

Rats were observed daily for the development of any signs
of toxicity throughout the treatment period. Repeated rote-
none treatment caused a marked decrease in both the food
intake and the locomotor activity and induced muscle relax-
ation of both fore and hind limbs accompanied by high
mortality rate in comparison to the other treatments.

Ozone therapy remarkably increased food intake and
rate of weight gain compared to the control group and pre-
vented mortality of the animals. Repeated treatment with
rotenone significantly (p < 0.05) decreased the levels of
dopamine and norepinephrine in both the cortex and stria-
tum. OzoneOP significantly (p < 0.05) minimized the
decreasing effect of rotenone on the levels of the two trans-
mitters in the cortical and the striatal regions (Table 1).

In addition, rotenone treatment increased the level of
NO, MDA, oxidized glutathione, and protein carbonyls of
brain cortex and striatum. Rotenone-treated animals
exhibited a significant (p < 0.05) decrease in the level of
GSH, ATP, and depressed enzymatic activity of SOD
(Tables 3–6).

OzoneOP significantly (p < 0.05) antagonized the dis-
rupting effect of rotenone on the tested parameters in the
cortical and the striatal regions (Tables 2–4).

Repeated rotenone treatment induced remarkable histo-
pathological abnormalities in brain cortex, which are mani-
ifested as inflammatory, hemorrhagic, and neurodegenerative
effects (Figure 2) in comparison to normal control (Figure 1).

OzoneOP remarkably attenuated the undesirable histo-
pathological damage induced by rotenone (Figure 3).
Ozone alone did not provoke any observable histological
abnormalities (Figure 4).

| Table 5. Effect of ozone preconditioning on cortical and striatal
superoxide dismutase activity in rotenone-induced parkinsonism in rats
(n = 8) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>Cortex (µg/g tissue)</td>
<td>Striatum (µg/g tissue)</td>
</tr>
<tr>
<td>Normal control</td>
<td>13.875 ± 0.295†</td>
<td>14.250 ± 0.412†</td>
</tr>
<tr>
<td>Rotenone</td>
<td>12.375 ± 0.324*</td>
<td>12.363 ± 0.422*</td>
</tr>
<tr>
<td>Rotenone + ozone preconditioning</td>
<td>15.250 ± 0.452*†</td>
<td>15.750 ± 0.366*†</td>
</tr>
<tr>
<td>Ozone</td>
<td>17.375 ± 0.498*†</td>
<td>17.125 ± 0.479*†</td>
</tr>
</tbody>
</table>

Data are mean ± SE.
*Significant difference from control group.
†Significant difference from rotenone group.
One-way ANOVA followed by LSD test, significant difference at p <0.05.

Rats treated with rotenone showed pathological changes
manifested as karyolysis of nerve cell nuclei and perivascular
edema (Figure 6) in comparison to normal midbrain ar-
chitecture (Figure 5).

OzoneOP remarkably prevented the undesirable histo-
pathological effects of rotenone (Figure 7). The histopatho-
logical feature of midbrain in ozone-alone-treated animals
did not differ from the normal control group (Figure 8).

Discussion

The present biochemical and histopathological data might
indicate the occurrence of cellular damage in the dopami-
nergic (DA) and noradrenergic (NE) neurons of both stria-
tal and cortical areas by rotenone treatment. The
concomitant decline in the levels of DA and NE mediators
might indicate the inhibition of neurotransmitter synthesis
through the inactivation of tyrosine hydroxylase (THY)
and/or mitochondrial dysfunction and cell damage. THY
may also exert unfavorable effects on DA and NE neurons.

| Table 6. Effect of ozone preconditioning on cortical and striatal
adenosine triphosphate content in rotenone-induced parkinsonism in rats
(n = 8) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>Cortex (mmol/g tissue)</td>
<td>Striatum (mmol/g tissue)</td>
</tr>
<tr>
<td>Normal control</td>
<td>1.519 ± 0.028†</td>
<td>1.389 ± 0.013†</td>
</tr>
<tr>
<td>Rotenone</td>
<td>1.150 ± 0.029*</td>
<td>1.043 ± 0.024*</td>
</tr>
<tr>
<td>Rotenone + ozone preconditioning</td>
<td>1.550 ± 0.028†</td>
<td>1.329 ± 0.024†</td>
</tr>
<tr>
<td>Ozone</td>
<td>1.689 ± 0.019*†</td>
<td>1.488 ± 0.018*†</td>
</tr>
</tbody>
</table>

Data are mean ± SE.
*Significant difference from control group.
†Significant difference from rotenone group.
One-way ANOVA followed by LSD test, significant difference at p
<0.05.†
by generating ROS (47). Endogenously generated free radicals together with exogenous pro-oxidants have the ability to convert the parent catechols into their quinone derivatives, which can modify the structure of the THY enzyme leading to its inhibition (48). The depletion of ATP, GSH, and the increase of MDA and protein carbonyl levels might support the occurrence of oxidative stress resulting in lipid

Figure 1. Transverse section of cerebral cortex of control rat showing the normal structure of the meninges (M) and cerebral cortex (C). H&E, ×40.

Figure 2. Transverse section of cerebral cortex of rat injected with rotenone showing severe hemorrhages (arrow), edema (o), and hyperemic blood vessels in the meninges covering the cerebral cortex. H&E, ×40.

Figure 3. Transverse section of the cerebral cortex of rat injected with rotenone and ozone showing normal histological structure in the cerebral cortex and surrounding meninges. H&E, ×40.

Figure 4. Transverse section of the cerebral cortex of rat injected with ozone showing perivascular edema surrounding the blood vessels (arrow). H&E, ×40.
and protein peroxidation and mitochondrial dysfunction, which lead to energy crisis and cell damage. In agreement with the biochemical data, histopathological findings indicated that rotenone-treated animals exhibited histological abnormalities in terms of degenerative changes and congested choroid plexi. Hemorrhage in focal areas and microvacuoles in the cytoplasm and pyknotic nuclei of cells of brain cortex and striatum were also observed.
Our study suggests that oxidative stress plays an essential role in rotenone toxicity and that OzoneOP may offer a remarkable protective effect against rotenone-induced brain toxicity.

Data presented in this paper are indicative of potentially positive effects induced by treatment with low doses of ozone. Particularly, an OzoneOP approach could be considered as a positive complement to the actual pharmacological therapies addressed to some pathologies such as diabetes and neurodegenerative disorders, promoting the regulation of endogenous NO concentrations and the maintenance of an adequate cellular redox balance.

References